Mungbean (Vigna radiata (L.) Wilczek), a warm-season legume native to India, is still grown widely there. It is also cultivated in several other countries in Asia as well as Africa (especially East Africa) and South America. In the United States, most mungbean is grown in Oklahoma (one of the southern states). In 2005, Senegalese researchers screened over 34 cultivars of mungbean from several countries (Taiwan, Tanzania, and New Zealand). The beans were screened for a potential export market. The first phase of the study focused on screening for yield performance and quality. The cultivars screened were grown on sandy soil at Ndiol research station, 25 km from Saint-Louis (Cisee, et al., 2011). All cultivars yielded at least 1500 kg ha⁻¹, with a peak of 2222 kg ha⁻¹ for one of the cultivars. Higher yields have been reported elsewhere.

By: Ozzie Abaye

The Mungbean Plant

Mungbeans look more like garden beans than soybeans and grow 61 to 76 cm tall. Plants are generally branched and grow in an upright bush habit, but some cultivars have a vining growth habit. The plants produce an abundance of yellow or white (depending on variety) flowers in clusters of up to 15 flowers at the end of each stem. Once they begin to flower, they continue to produce flowers throughout the early and mid-summer months, i.e., they are indeterminate. The seed pods are 8 to 10 cm long, each having approximately 10 to 12 seeds. Depending on cultivar and growing conditions, a plant can produce 30 to 40 pods. Due to the indeterminate flowering pattern, the pod production is staggered, with some pods maturing early.

Mungbean plants mature relatively quickly, with pods forming about 80 days after planting. The seed pods are 8 to 10 cm long, each containing approximately 10 to 12 seeds. The pods are harvested when they are full but before they burst after weaning calves in May and early June. No hay is made in pastures. They use electrified high tensile wire on all border poles and rope gates.

Mungbean’s appealing qualities include its ability to tolerate drought and to grow on marginal soils. It does poorly in alkaline (like most legumes) must be inoculated with the proper strain of Rhizobium. Mungbean can be cross-inoculated with cowpea rhizobia. Mungbean plants grew to 61 to 76 cm tall. Plants are generally branched and grow in an upright bush habit, but some cultivars may have a vining growth habit. The plants produce an abundance of yellow or white flowers in clusters of up to 15 flowers at the end of each stem. Once they begin to flower, they continue to produce flowers throughout the early and mid-summer months, i.e., they are indeterminate. The seed pods are 8 to 10 cm long, each having approximately 10 to 12 seeds. Depending on cultivar and growing conditions, a plant can produce 30 to 40 pods. Due to the indeterminate flowering pattern, the pod production is staggered, with some pods maturing early. The Covenant Agro Vetivets in the Toubacouta area, is the main cultivar grown in the US. Berken produces approximately 12 beans, which mature about 80 days after planting. Berken seeds typically sprout in 3 to 5 days. In Toubacouta, we had good sprouts in 3 days.) This cultivar has been widely used as a “sprout” bean.

Soil and Climate Adaptation

Mungbean is well adapted to sandy or sandy loam soils. However, it does not do well in “heavier”, or more clayey, soils. Mungbean’s appealing qualities include its ability to tolerate drought and to grow on marginal soils. It does poorly in alkaline conditions where it will quickly develop symptoms of severe iron chlorosis, such as yellowing leaves. Mungbeans prefer a slightly acidic to neutral soil with a pH of 6.2 to 7.2. The mungbean belongs to the legume family and has the ability to fix its own nitrogen; but it requires additional nutrients, such as phosphorus, calcium, magnesium, potassium, and sulfur for optimum growth. For successful nodulation and maximum nitrogen fixation, mungbean (like most legumes) must be inoculated with the proper strain of Rhizobium. Mungbean can be cross-inoculated with cowpea rhizobia. The mungbean plant requires well-drained soils. It will not tolerate a wet root system, which can cause disease. A lack of moisture -- especially during the critical flowering and pod-filling period can reduce yields significantly. It is a short-day plant (flower initiation requires exposure to nights longer than some critical period), but mungbean can be grown over a wide range of latitudes, provided minimum temperatures exceed 15°C.

Planting

In Senegal, mungbean can be cultivated under rainy as well as under irrigated conditions. Generally, mungbean should be planted soon after the rainy season begins in Senegal (end of June to early July). Mungbean is a short-season, warm-season fixed legume that requires 80 to 110 days from seeding to harvest. Therefore, for optimum grain yield, mungbean should be planted as soon as the rainy season begins. Mungbeans planted in Toubacouta in the first week of July began flowering the third week of August (50+ days after planting). However, crops planted in August may not have adequate rain to produce seed and might need to be irrigated. Cisee et al. (2011) planted mungbean in March during the hot, dry season in Senegal (Saint Louis). Under irrigation, the seeds emerged 5 days after planting. The researchers placed seeds at 3 to 5 cm depth with equidistant spacing (50 x 50 cm), giving 40,000 plants/ha. The vining type mungbean can be seeded at a lower rate with wider spacing.

Use and Nutritional Value

Mungbean has high nutritive value with high protein content about three to four times that of cereals. It is used as a food, feed (forage), or cover crop. As a food, dried beans may be eaten whole or split, cooked, fermented, or milled into flour to make pastas, soups, porridges, confections, and alcoholic beverages. Mungbeans are known for their sweet flavor, and mungbean paste is used in some Asian countries to make frozen ice desserts. In western cultures, the beans are popular for sprouting, with major use as a fresh salad vegetable. (Sprouts are young seedlings just after seed germination.) The most common sprout marketed is mungbean seed, which contains 25 to 28% protein, 1 to 1.5% fat, 3.5 to 4.5% fiber, 4.5 to 5.5% ash and 60 to 65% carbohydrate. The multiple uses of mungbean as both feed and food can help the farmer distribute economic risk and diversify his farm income.

Reference:

Dr. Ozzie Abaye is with Crop and Soil Environmental Sciences Department at Virginia Tech.
Fescue Genetics - Is the Solution in Selection?

AGENCY
2016 AFGC Annual Conference
By: Matt Booher, and John Benner,
Marnie Caldwell
Tall Fescue Toxicosis is a serious issue that still impacts beef
grazing on a portion of pasture acres from spring-greenup
through late-summer as a way to store forage in the field for emergency pasture and/or to assist in stockpiling fall growth of
645 Waddell St.
Charlottesville, VA 22902

Fescue Stockpiling Fescue for Late-
summer Pasture

By: Matt Booher, and John Benner,
Summer-stockpiling is a technique where producers defer grazing on a portion of pasture acres from spring-greenup through late-summer as a way to store forage in the field for emergency pasture and/or to assist in stockpiling fall growth of
Culpeper, VA 22701

Fescue Genetics - Is the Solution in Selection?

AGENCY
2016 AFGC Annual Conference
By: Matt Booher, and John Benner,
Marnie Caldwell
Tall Fescue Toxicosis is a serious issue that still impacts beef
grazing on a portion of pasture acres from spring-greenup
through late-summer as a way to store forage in the field for emergency pasture and/or to assist in stockpiling fall growth of
645 Waddell St.
Charlottesville, VA 22902

Resistance to Tall Fescue Toxicosis:
Genotyping Shenandoah Valley ACRE
Cow Herd

By: Chris Teutsch, Brian Campbell and
Biswaup Mukhopadhyay
Tall fescue is now on more than 35 million acres providing the pasture base for more than 8 million brood cows in the transition
area between the temperate northern and subtropical southern
United States (Ball et al., 2015). In 1931, an ecoyte of tall fescue was discovered on a hillside in Menifee County Kentucky by
a researcher from the University of Kentucky. Samples were
collected and underwent extensive testing before the cultivar
"Kentucky 31" was released in 1943. This grass was rapidly
adopted by farmers throughout the transition zone due to its
strong agronomic characteristics and tolerance to both biotic and abiotic stresses.

Soon after its release, tall fescue became known for poor ani-
mal health. Tall fescue was found to cause several maladies in- cluding fescue foot, bovine fat necrosis, and summer slump. Combined these maladies are referred to as tall fescue toxicosis.
It was not until the 1970’s that the source of these maladies was
discovered, an endophyte that grows inside the tall fescue plant. This endophyte-plant combination produces a group of com- pounds called ergot alkaloids that are highly toxic to livestock.
After the endophyte was discovered, plant breeders removed the endophyte from the tall fescue plant and released ergot free
cultivars. While animal performance was excellent, the persist- ence and tolerance to stresses was lowered, and these cultivars did not persist under less than optimal management.

The most recent chapter in the tall fescue story is the develop- ment of tall fescue cultivars infected with the novel or non-toxic
endophyte. This endophyte imparts tolerance to stresses, but does not produce the toxins associated with tall fescue toxicosis.
The adoption of the novel endophyte technology has been slow and farmers are reluctant to covert large acreages to the non-toxic cultivars for an addition, much of the sheltering land in the Appala-chian region poses a significant erosion potential, making conver- sion risky.

2016 AFGC Annual Conference
January 10-13, 2016
Baton Rouge, LA
www.afgc.org

2016 Winter Forage Conferences
January 26-29, 2016
Locations
Blackwells 1/26/16
Wytheville 1/26/16
Yewells Cave 1/26/18
Brandy station 1/29/16
www.vadorgho.org

Upcoming Events

VIRGINIA FORAGE AND GRASSLAND COUNCIL 2015 BOARD OF DIRECTORS

INDUSTRY
Marie Caldwell
Rockbridge Coop.
645 Waddell St.
Lexington, VA 24450
Brian Jones
Heritage Hill Ag’l
53 LeHigh Rd
Craigsville, VA 24438

J. B. Daniel
NRCS-Forage and Grassland
100-D Dominion Drive
Farmville, VA 23901

Mike Phillips
NRCS Conservation Technician
9578 Brady Lane
Harrisonburg, VA 22802

TREASURER AND REGIS-
TERED AGENT
Dale Williams
128 McCormack Farm Circle
Raphine, VA 24472

EDUCATIONAL ADVISORS
Dr. Gary Gray
AACE Dept. (0401)
Virginia Tech
Blacksburg, VA 24061

Dr. Ben Tracy
425-S Smyth Hall (0404)
Virginia Tech
Blacksburg, VA 24061

Dr. John Fike
Fries, VA 24330

Dr. Chris Teutsch
SPARE
2375 Darvills Road
Blackstone, VA 23824

Managing Editor,
Dana M. L. Scharf
SARE's
Virginia State University
M.T. A. Building
Petersburg, VA 23806

SECRETARY
Dennis Jones
375 Mountain View Road
Farmville, VA 23901

Resistance to Tall Fescue Toxicosis: Genotyping Shenandoah Valley ACRE Cow Herd

By: Chris Teutsch, Brian Campbell and Biswarup Mukhopadhyay
Tall fescue is now on more than 35 million acres providing the pasture base for more than 8 million brood cows in the transition area between the temperate northern and subtropical southern United States (Ball et al., 2015). In 1931, an ecoyte of tall fescue was discovered on a hillside in Menifee County Kentucky by a researcher from the University of Kentucky. Samples were collected and underwent extensive testing before the cultivar “Kentucky 31” was released in 1943. This grass was rapidly adopted by farmers throughout the transition zone due to its strong agronomic characteristics and tolerance to both biotic and abiotic stresses.

Soon after its release, tall fescue became known for poor ani- mal health. Tall fescue was found to cause several maladies including fescue foot, bovine fat necrosis, and summer slump. Combined these maladies are referred to as tall fescue toxicosis. It was not until the 1970’s that the source of these maladies was discovered, an endophyte that grows inside the tall fescue plant. This endophyte-plant combination produces a group of compounds called ergot alkaloids that are highly toxic to livestock. After the endophyte was discovered, plant breeders removed the endophyte from the tall fescue plant and released ergot free cultivars. While animal performance was excellent, the persistence and tolerance to stresses was lowered, and these cultivars did not persist under less than optimal management.

The most recent chapter in the tall fescue story is the develop- ment of tall fescue cultivars infected with the novel or non-toxic endophyte. This endophyte imparts tolerance to stresses, but does not produce the toxins associated with tall fescue toxicosis. The adoption of the novel endophyte technology has been slow and farmers are reluctant to covert large acreages to the non-toxic cultivars for an addition, much of the sheltering land in the Appalachian region poses a significant erosion potential, making conversion risky.
about 85 laying hens, 4 horses, 11 sheep, 7 American Guinea Hogs, and 2 llamas. The animals are rotated through the farm pastures in a cycle that is designed to control weeds and pests, starting with the goats, followed by the cattle, and finished with the horses, where the cycle picks back up again. The chickens are placed into pasture with any of the other animals and are used to aid in the control of parasites and flies that are pests of the larger livestock. The American Guinea Hogs that reside on Waverly Farms are fenced into wooded paddocks around the farm, where they are allowed to root and forage, and are fed garden scraps and soy-free feed.

The Rosenbergs, through Waverly Farms, work to provide an educational opportunity for anyone interested in the operation of a small farm and running a CSA, particularly young adults that are considering a career in agriculture. The farm currently employs a CSA/Garden Manager, an Animal Manager, and two to four interns and apprentices that run the farm on a daily basis, with help from volunteers at picking and packing time. These people are drawn to the one-of-a-kind experience and education provided daily on this working farm. The experience also fosters a sense of community among these volunteers and employees. When asked why they were drawn to this type of employment, one of the employees stated that “none of us grew up on a farm and there was a disconnect and a feeling of ‘missing out’ on knowing where food comes from and how it is grown”. Another said that he “likes growing food and wanted to try on a commercial scale”. After interning, apprenticing, and working on this farm, young adults have gained not only an invaluable education but also a true appreciation of farming and what it takes to produce food.

One particular aspect of the farm operation that the Rosenbergs and their employees take pride in, is the direct marketing aspect of their sales. Direct marketing, or the practice of selling products directly to the customer, creates what one of the employees describes as a “satisfaction from interaction with the customer”. This practice is becoming more popular in the farming community because it helps create relationships between farmers and their customers and gives consumers the opportunity to know where their food is produced. Waverly Farms also provides members the opportunity to tour and volunteer on the farm (a 4-6 hour/week shift will earn a member a weekly CSA share).

Success for the Rosenbergs is found in their ability to bring healthy food to local people, provide educational opportunities for those interested in farming, and improve and honor the environmental richness of Waverly Farms for future generations.

Haley McCann serves as the Virginia Cooperative Extension Agent, Agriculture and Natural Resources in Nottoway County.

To JOIN the Virginia Forage and Grassland Council a membership form can be found on the web at http://www.vaforages.org
Contact Margaret Kenny at makenny@vt.edu or call 434-292-5331

More than creating a model for success, Smith Meadows is a farm that produces considerable value. According to Mr. Pritchard, “Trampling and manure density are a key focus, while maintaining high levels of available, balanced nutrition.” As 70,000 to 50,000 pounds of livestock per acre come into a new paddock, 30 to 40 per cent of the forage is consumed in a few hours. The balance of the forage is trampled. The livestock move on to the next paddock. The grass is allowed to recover before grazing again after 100 -120 days or longer. As a result the organic component of the soil increases. More carbon is sequestered in the soil. Mr. Pritchard’s aim is fastened on raising soil organic levels to six percent. The farm is also attracting a more diverse environment as wildlife including turkeys and pheasants are finding habitat, according to Mr. Pritchard.

The term “Mob Grazing” entered our lexicon just a few years ago. But it aptly describes how ungulates and the forages that they consume co-evolved as immense herds moved across the grasslands over millennia. Natural grasslands carpet the deepest and most fertile soils around the globe. Three hundred years ago the Shenandoah Valley was a fertile tall grass prairie. Obviously, this new forage management paradigm will not suit everyone’s set of skills and resources. Yet, Smith Meadows Farm shows how a modern successful enterprise is patterned on an ancient relationship that is building great value today the old fashioned way.

Leo Tammi is a sheep producer from Mt. Sidney, VA and a former VFGC Board member.

Success for the Rosenbergs is found in their ability to bring healthy food to local people, provide educational opportunities for those interested in farming, and improve and honor the environmental richness of Waverly Farms for future generations.

Haley McCann serves as the Virginia Cooperative Extension Agent, Agriculture and Natural Resources in Nottoway County.

To JOIN the Virginia Forage and Grassland Council a membership form can be found on the web at http://www.vaforages.org
Contact Margaret Kenny at makenny@vt.edu or call 434-292-5331

More than creating a model for success, Smith Meadows is a farm that produces considerable value. According to Mr. Pritchard, “Trampling and manure density are a key focus, while maintaining high levels of available, balanced nutrition.” As 70,000 to 50,000 pounds of livestock per acre come into a new paddock, 30 to 40 per cent of the forage is consumed in a few hours. The balance of the forage is trampled. The livestock move on to the next paddock. The grass is allowed to recover before grazing again after 100 -120 days or longer. As a result the organic component of the soil increases. More carbon is sequestered in the soil. Mr. Pritchard’s aim is fastened on raising soil organic levels to six percent. The farm is also attracting a more diverse environment as wildlife including turkeys and pheasants are finding habitat, according to Mr. Pritchard.

The term “Mob Grazing” entered our lexicon just a few years ago. But it aptly describes how ungulates and the forages that they consume co-evolved as immense herds moved across the grasslands over millennia. Natural grasslands carpet the deepest and most fertile soils around the globe. Three hundred years ago the Shenandoah Valley was a fertile tall grass prairie. Obviously, this new forage management paradigm will not suit everyone’s set of skills and resources. Yet, Smith Meadows Farm shows how a modern successful enterprise is patterned on an ancient relationship that is building great value today the old fashioned way.

Leo Tammi is a sheep producer from Mt. Sidney, VA and a former VFGC Board member.
Chesapeake Bay News

Federal appeals court upholds Chesapeake Bay pollution limits

A federal appeals court has held that the U.S. Environmental Protection Agency (EPA) can set pollution limits for the Chesapeake Bay, upholding the Total Maximum Daily Load (TMDL) issued by the agency in 2010.

The TMDL, also known as the Bay "pollution diet," set limits on the amount of nitrogen, phosphorus and sediment allowed to run into the Bay each year. Watershed Implementation Plans (WIPs) describe the steps each of the seven Bay jurisdictions—Delaware, Maryland, New York, Pennsylvania, Virginia, West Virginia and the District of Columbia—will take to meet these goals, and are included as commitments in the recent Chesapeake Bay Watershed Agreement.

In 2011, the American Farm Bureau Federation, the Pennsylvania Farm Bureau, the National Association of Home Builders and a number of agricultural trade associations filed suit against the EPA, claiming the federal agency lacked authority to issue the TMDL. Numerous local and national partners intervened in support of the EPA, including the Chesapeake Bay Foundation, Midshores Riverkeeper Conservancy, National Wildlife Federation and others. In 2013, Pennsylvania Federal Judge Sylvia Rambo upheld the pollution limits, leading plaintiffs to appeal. On Monday, the U.S. Third Circuit Court of Appeals in Philadelphia again upheld the TMDL as legal under the Clean Water Act.

“Water pollution in the Chesapeake Bay is a complex problem currently affecting at least 17,000,000 people (with more to come),” wrote Judge Thomas L. Ambro, part of the three-judge panel that heard the appeal, in a 60-page ruling. “Congress made a judgment in the Clean Water Act that the states and the EPA could, working together, best allocate the benefits and burdens of lowering pollution.

Learn more about the plan to reduce pollution in the Bay on the EPA’s TMDL website.

Fescue Genetics Page 8

calve earlier in their lifetime, which is an indicator of overall reproductive efficiency than their susceptible counterparts. With these advances dealing with tall fescue may soon be as simple as pulling a hair from an animal, running a test and determining if it stays in the herd or is culled.

This is not a true silver bullet as resistance to tall fescue toxicosis is not the same as not being impacted at all. While these animals are better able to handle the toxins it still impacts them in some ways. Best management practices should still be used, a good mineral program, rotational grazing, hay testing and culling the cattle that do not perform well on your farm will all help your farm improve.

TAKE HOME MESSAGES

Some cattle are resistant to tall fescue toxicosis

Cattle which are raised on tall fescue toxicosis for generations are more likely to be resistant.

Pick your bulls and replacement heifers wisely

Do Not Single Trait Select

Unfortunately this test is not commercially available

Dr. Brian Campbell, DSM Nutritional Products and Dr. Chris Teutsch, Virginia Tech Southern Piedmont Agricultural Research & Extension Center.

figure 1. Genotypes of fall calving brood cows at Virginia Tech’s Shenandoah Valley Agricultural Research & Extension Center, Steeles Tavern, VA.

figure 2. Genotypes of fall calving brood cows at the Shenandoah Valley Agricultural Research & Extension Center, Steeles Tavern, VA.

Toxicosis: Page 5

Up until recently, solutions for tall fescue toxicosis have been plant centered. However, work at the University of Tennessee has focused on animals genetics. Two polymorphisms, one in the Dopamine Receptor D2 (DRD2) and the other in the Kelch Domain Group Subunit Related Family Member 4 (XKR4) have been associated with resistance to tall fescue toxicosis (Campbell, 2011; 2012; 2013; Campbell et al., 2014). In 2014 as part of a larger project funded with documenting the impact of the novel and toxic endophyte on the rumen micro-biome, brood cows and their calves at the Shenandoah Valley AREC were genotyped for the DRD2 polymorphism. It was found that 19% of the herd and only 8% of the calves possessed the DRD2 polymorphism that was related to resistance to tall fescue toxicosis (Figures 1 and 2). The lower expression of the genotype resistant to tall fescue toxicosis was somewhat unexpected, but is likely related to a breeding program based primarily on AI sires. Many of these sires likely came from areas outside of the tall fescue belt.

Research focusing on the animal genetics resistant to tall fescue toxicosis is truly exciting. However, it is important to remember that this is preliminary work and that resistance to tall fescue toxicosis is likely a multi-gene trait. It is also important to remember that the use of AI has introduced many desirable traits to cattle in Virginia and that selection based on a single trait is never recommended. In conclusion, preliminary work at the University of Tennessee suggests that screening cows and potential sires for the DRD2 gene may be useful for selecting animals resistant to tall fescue toxicosis.

Chris Teutsch, Virginia Tech’s Southern Piedmont AREC; Brian Campbell, DSM Animal Nutrition and Health, and Biswarup Mukhopadhyay, Biochemistry, Virginia Tech

Corn and soybean returns are highest when growers and their neighbors manage glyphosate resistance

Glyphosate, also known by the trade name Roundup, is the most widely used herbicide in the United States. Widespread and exclusive use of glyphosate, without other weed control strategies, can induce resistance to the herbicide by controlling susceptible weeds while allowing more resistant weeds to survive, proliferate, and spread. Resistant weed seeds can disperse across fields—carried by animals, equipment, people, wind, and water. Consequently, controlling weed resistance depends on the joint actions of farmers and their neighbors.

ERS analyses evaluated the long-term financial returns to growers who adopt weed control practices that aim to slow resistance to glyphosate, and compared these returns with neighboring farmers who also manage to slow resistance. Projected net returns (annualized over 20 years) for growers who manage resistance generally exceed returns for growers who ignore resistance; they are even higher when neighbors also manage resistance. Projected net returns for growers with neighbors who also manage resistance range 18-20 percent higher than those of growers/neighbors who ignore resistance.

This chart visualizes data found in the Amber Waves feature, “Managing Glyphosate Resistance May Sustain Its Efficacy and Increase Long-Term Returns to Corn and Soybean Production,” May 2015.

Related Data

ARMS Farm Financial and Crop Production Practices
Adoption of Genetically Engineered Crops in the U.S.

Related Reports

The Economics of Glyphosate Resistance Management in Corn and Soybean Production

Corporate Sponsors

Augusta Cooperative Farm Bureau, Inc. 540/885-1265

Countrywide Natural Products
Kevin Fletcher 540/946-8808

Culpeper Farmers Coop., Inc. 540/825-2200

Dow
Josh McMillian 252/558-3792

Merck Animal Health
Tony Brubaker 804-356-5972

Pennington Seed, Inc.
706/342-1234

Piedmont Environmental
540-347-2334

Recycle Systems, Inc.
Susan Trambo 800/352-3261

Seedway
Butch Johns 434-395-1810

Southern State Cooperative, Inc.
800/584-6556

Stay-Tuff Fence Mfg., Inc.
Lewis Sapp 336/918-7236

Your first source for forages!

• Experienced Certified Crop Advisers (CCAs) on staff to make agronomy recommendations
• Large selection of forage seeds in stock
• Bulk & bagged fertilizer
• Crop Protectants & Fertilizer Feeding products
• Application services for fertilizer & crop protectants
• Multi-drip “Relief” nozzles recommended service to better match forage nutrient requirements
• Field & hill-verbena
• Fencing & watering supplies

www.augustacoop.com
Mob Grazing on Smith Meadows Farm

By: Leo Tammi

Mob Grazing, as it is commonly practiced today, involves moving a relatively large herd of cattle or other livestock between small paddocks daily or more frequently. Some of the forage in each paddock is eaten, but much of it remains ungrazed and is trampled by hoof action. The herd is then moved on to the next small paddock to the same result. To the untrained eye, the aftermath is an ugly mess.

The upshot is to create a forage and livestock system that allows more cattle on the same or fewer acres, good weed control, less fertilizer, extended growing season, improved livestock health, more plant diversity, and better soil health by building organic matter and stemming erosion. It is a beautiful thing.

In mid July forage producers had an opportunity to see mob grazing in action as we converged on Forrest Pritchard’s family Smith Meadows Farm in Berryville, Virginia. The program and tour was sponsored by VFGC, USDA-NRCS, Lord Fairfax SWCD and Virginia Association for Biological Farming (VABF). Smith Meadows Farm has been in the Pritchard family since the early 1800s. Forrest Pritchard’s first venture into managing that farm after graduating from college in 1996 included growing corn and soybeans over most the acres. He shared costs and returns with a neighbor that provided the equipment and expertise.

The family’s share of net income that year was $18,000. Now, Smith Meadows Farm succeeds as a result of low cost inputs and a high level of management. Mr. Pritchard has done well what many of us are clumsy at: He has matched his livestock with its available resources.

By: Jonrepair

So, you thought making high quality forages was a can of corn. Most areas across the state have been overly blessed with moisture which has made harvesting highly desirable forage feedstuffs a major challenge for 2015. This has certainly been the opportune time to utilize the process of harvesting and wrapping forages as wet balage. For those not fortunate enough to have access to wrapping equipment, the efforts to make high quality dry hay has been two fold. The first obstacle has been to cut and harvest hay without getting quality compromised by rain. As waiting has taken place for long enough rain-free windows, quality has decreased as forages have matured. For many producers the waiting game has meant harvest- ing not only the first, but also the second cutting at the same time, as the under store vegetative growth has flourished. This has resulted in a total unknown in regard to the quality of what has been harvested.

2015 is beginning to set up the perfect storm for those who do not annually test their harvested forages. It is vitally important to consider testing forages so that the guess work is removed as to the quality of forages you have produced and will be feeding later. Forage testing will allow you to properly feed harvested forages, while at the same time save money, and properly maintain your livestock and horses during the feeding months.

Just as high quality forage production is a challenge, maintaining the high level of educational opportunities that the Virginia Forage and Grassland Council provide across the state is never ending. This summer has seen three excellent Field Days across the state with one more to follow during September in the Shenandoah Valley.

Plants are also in place for our four Winter Forage Conferences to be held in 2016. We will be focusing on Tall Fescue Production and Utilization. These conferences will certainly provide you with the most current cutting edge research and production information, as we continue to utilize tall fescue in Virginia to its strongest advantage in our livestock systems.

Thanks to all who have worked diligently to put forth all these forage events. Your continued efforts are greatly appreciated. If you would like to garner more information about VFGC and or all of our upcoming events, you are able to continually learn more through the reading of our quarterly newsletters and or by visiting our Web site (vafar.org).

Stay Save as you continue forward with your daily efforts

By: President, VFGC

The birds you have to work with the birds, the lower your labor costs. But how do you improve the rate that they turn feed into meat? That’s the question that the producers at Pasture Perfect Poultry decided to answer with some on farm research supported by SARE (Sustainable Agriculture Research and Education.) It turns out that by paying attention to WHEN you feed the birds, you reduce your labor costs and you increase their feed efficiencies.

Perfect Poultry farms to compare the difference between feeding twice a day, as they always had, or once at mid-day. On processing day, they weighed each bird and determined an average live weight. What they found is that there is a significant difference in the weights of the birds between the two feed- ing. There was a difference in labor cost, according to project coordinator Melissa Fischbach.

“Being able to feed the poultry one time per day in the Day-Range system would save one visit to the poultry, which de- pending on the number of birds being raised, can easily be 0.5 to 1.0 hours per day. Overall, the 4 week pasture grow-out period this equates to up to 28 hours saved. Multiplied by an hourly wage of $12 per hour, feeding one-time per day could save up to $136. Although the results from four batches tested, the once-per-day feeding may even increase the performance of the birds. A 0.5 average weight increase was observed for one of the batches, which equates to an extra $1.40 per bird assuming a retail price of $2.85 per pound.”

Melissa encourages others to do this trial on their operations. She notes that very little research is being done in this field, and that additional data gathered by farmers will help everyone figure out how to maximize profits and gain. If you’d like to run your own trial, she and her colleagues created a how-to-manual and are happy to answer your questions by contacting Melissa and Jason Fischbach at pastureperfectpoultry@gmail.com.

See more at: http://onpasture.com/2014/07/14/how-to-get-your-chickens-to-make-the-best-use-of-pasture/

By Kathy Voht / July 14, 2014 / Comments Off on How to Get Your Chickens to Make the Best Use of Pasture

Changing the time when you feed your birds can increase their foraging, potentially increase weight gain, and reduce labor costs. Labor cost and feed-conversion efficiencies; these are the two things that determine the profitability of a pastured meat-bird operation. The less you have to work with the birds, the lower your labor costs. But how do you improve the rate that they turn feed into meat? That’s the question that the producers at Pasture Perfect Poultry decided to answer with some on farm research supported by SARE (Sustainable Agriculture Research and Education.)

By: President, VFGC
Managing Tall Fescue in Grazing Systems Theme of 2016 Winter Conferences

By: Margaret Kenny

The theme of the 2016 VFGC Winter Conferences will be “Tall Fescue in the 21st Century: Understanding and Managing Tall Fescue in Grazing Systems”. The conferences will be held on January 26 in Blackstone, VA, January 27, in Wytheville, VA, January 28 in Weyers Cave, VA, and January 29 in Brandy Station, VA. The speakers selected for this year’s conferences are nationally and internationally renowned experts in tall fescue and tall fescue toxicosis. The morning sessions will be focused on problems and issues associated with the use of tall fescue in grazing systems. Matt Bosher and John Benner will discuss “What we have learned about Tall Fescue” - explaining the take away points from their field trials in the Valley. Glenn Aiken of the USDA’s Ag Research Service ARS, Lexington Kentucky will then discuss the impact of tall fescue on the animal. Joe Bouton will end the morning session with a discussion of challenges and opportunities of incorporating novel endophyte tall fescues into grazing systems.

The afternoon session will focus on finding practical solutions to using tall fescue in grazing systems. Craig Roberts of the University of Missouri will begin with a discussion of cattle genetics and whether resistance to tall fescue toxicosis is real. Pat Burch of Dow Agroscience will discuss the chemical suppression of seedheads in tall fescue pastures. The highlight of the afternoon will be presentations by local producers on how they manage tall fescue on their farms. The final summary speaker of the day will be John Andrae of Clemson University and co-author of “Fescue Toxicosis and Management”. Dr. Andrae will discuss putting all the pieces together to form an integrated approach to managing tall fescue in grazing systems.

These conferences will likely be the best tall fescue conferences in the country and it is happening at your doorstep in Virginia. Registration for conferences will begin in November. For more information on this winter’s conferences and to see a copy of tentative agenda go to www.vaforages.org.

Margaret Kenny is the Managing Editor, VA FORAGER & Admin Assistant for the VFGC. She is with Virginia Tech Southern Piedmont Center in Blackstone, Virginia. She lives on a farm in Nottoway County with her husband Kim Kenny.

Meet Waverly Farms

By: Haley McCann

Waverly Farms, owned by Stuart and Patti Rosenberg, is located outside Burkeville, Virginia in Nottoway County. Stuart's family's association with Burkeville began around 1865 with the purchase of Inverness, a significant dairy operation just a mile down the road from Waverly Farms. Summers spent at Inverness and with his uncle, Bill Agnew, at Waverly Farms were a big part of growing up. There were many happy and large family gatherings in Burkeville over the years. In 2007, Stuart and Patti were looking for a farm to call their own, and jumped at the opportunity to purchase Waverly Farms from Mr. Agnew keeping it in the family and in farming.

Waverly Farms is operated as a Community Supported Agriculture (CSA) farm with vegetable and optional eggs and optional protein shares. A CSA is defined as a community of individuals, called shareholders or members, purchase a “share” of the anticipated harvest and make payment in advance at an agreed price. In return, they receive a portion of the farm's bounty throughout the growing season. The Waverly Farms CSA runs from April 30th to almost the end of December and has 80 families as members. The shares are boxed and delivered to seven different pick-up locations from Burkeville to Farmville and contains a variety of the weeks' harvest of vegetables. There is also the option to purchase shares of beef, pork, goat, honey, goat cheese, or eggs and have them added to the box. Each member also receives a newsletter that lists the contents of their box and tips on cooking and preserving the bounty.

Clarke Farms in Brunswick County

By: Cynthia Gregg and Taylor Clarke

The Clarke Farm in southern Brunswick County has managed its pastures with rotational grazing for two decades. The Clarke Family in developing their rotational system has partnered numerous times with their local soil and water district, Lake Country. This partnership has led to an innovative and diverse livestock watering systems that supports their rotational grazing system and improves their forage management for their fall calving herd.

Their interest in developing a rotational grazing system began with the desire to preserve and protect a natural spring on the farm. Through cost-share and technical assistance from Lake County SWCD, the spring was developed as a water source to supply 6 paddocks using gravity fed tire waters. Later, through assistance from the Old Dominion RC&D in partnership with Lake Country a solar water pumping system was added to the spring. The solar system allowed water to be pumped from the spring to storage tanks uphill then gravity fed to ball waterers serving 3 more paddocks. With the use of pressurized, gravity and solar, the Clarke Family has developed a watering system for all their grazing acreage reach consists of 25 permanent paddocks of which most are easily and frequently subdivided with polywire.

Clarke Farms Page 6